Field of Science

The molecular domestication of amphibian retroviruses - do they play aphysiological role?






Xenopus tropicalis - do recently identified ERVs play a functional role?


ResearchBlogging.orgWe mostly think of viruses of being ‘bad’ and ‘dangerous’ yet there are countless examples of viruses playing a positive role in their host’s life. These symbiotic agents have been co-opted by the host to do something good; some viruses have even been inserted into our genomes and thus are forever tied to our germline and our descendants - sometimes even these viruses can do good. This is the kind of game evolution plays with our viral parasites and us – its generally pretty cruel and inconsiderate but every so often we get something good out of it.

One example of these endogenous viruses is the endogenous retroviruses or ERVs, which are somewhat related to the non-endogenous – ‘exogenous’ – retroviruses that can cause disease in us and other animals (HIV XMRV?). Just to put it into perspective, 8% of our genome is made up of these ERVs and they also make up a large chunk of other vertebrate genomes. The majority of these inserted retroviral genomes have been destroyed by the forces of evolution and thus bear little resemblance to their ‘wild’ cousins; they are not expressed and their sequence shows little homology to other retroviruses. However, some ERVs have changed very little, suggesting an important function may be conserving them – these are expressed and do sort of resemble the exogenous ones. The insertion of a novel ERV sequence into a host’s genome acts as evolutionary raw material allowing significant adaptive functions to arise and a great deal of evidence suggests they can these can even play a physiological role in host biology – this is known as molecular domestication. One interesting example is the ERV role in the mammalian placenta.



A recent paper reports the discovery and characterisation of an amphibian ERV whose genomic organisation is highly conserved making it a good candidate to have a novel physiological function. Investigating the genome of Xenopus tropicalis - an 'African clawed frog', the group discovered a unique DNA sequence that was highly related to a previously characterised Xenopus protein with frost-resistant functions - allowing winter survival in woodland frogs. This 9,551 base-pair DNA sequence not only contained the intact frost-resistant gene but also a full-length retroviral genome with the general organisation of many common ERVs – 5’ LTR-GAG-POL-ENV-3’LTR.

ABSTRACT: We report on the identification and characterization of XTERV1, a full-length endogenous retrovirus (ERV) within the genome of the western clawed frog (Xenopus tropicalis). XTERV1 contains all the basic genetic elements common to ERVs, including the classical 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR archi- tecture, as well as conserved functional motifs inherent to each retroviral protein. Using phylogenetic analysis, we show that XTERV1 is related to the Epsilonretrovirus genus. The X. tropicalis genome harbors a single full-length copy with intact gag and pol open reading frames that localizes to the centromeric region of chromosome 5. About 10 full-length defective copies of XTERV1 are found interspersed in the genome, and 2 of them could be assigned to chromosomes 1 and 3. We find that XTERV1 genes are zygotically transcribed in a regulated spatiotemporal manner during frog development, including metamorphosis. Moreover, XTERV1 transcription is upregulated under certain cellular stress conditions, including cytotoxic and metabolic stresses. Interestingly, XTERV1 Env is found to be homologous to FR47, a protein upregulated following cold exposure in the freeze-tolerant wood frog (Rana sylvatica). In addition, we find that R. sylvatica FR47 mRNA originated from a retroviral element. We discuss the potential role(s) of ERVs in physiological processes in vertebrates.

Following the characterisation of the genome sequence, the group looked whether there any more ERVs like this one in Xenopus genomes  to see if  this a rare example of a highly conserved ERV and were there any other examples of these sequences present? There turned out to be 59 genomic loci with some sort of homology to the newly found ERV however all had significant mutations present rendering them functionally inactive – at least where gene expression is concerned. These sequences were mapped onto Xenopus chromosomes, showing that the intact ERV was present on chromosome and the ‘damaged’ ones were found throughout the genome. This ERV is after all a lone agent in the Xenopus genome - confirmed by these experiments.

Phylogenetic studies were also carried out which suggested that primary retroviral integration occurred roughly 41 million years ago and from then on multiple rounds of movement around the genome or reinfection generated the many mutated copies around the genome. Their results also suggest that this ERV is actively replicating and inserting itself into the genome up to the present day. A cousin of this retrovirus was also found in the closely related X.laevis genome showing that integration occurred prior to the evolutionary separation of these two lineages.



They next turned their attention to whether this ERV had a functionally active role (is it transcribed; in what tissues and at what points in frog development?) in host biology as observed in other host/ERVs. Using real-time PCR and in situ hybridisaton techniques, the group were able to follow ERV expression throughout X. tropicalis development and assess the level of transcription and tissue localisation and possible infer a physiological function. They noted a highly regulated yet dynamic expression of gag, pol and env expression from fertilisation through metamorphosis (curiously a peak of activity was seen during metamorphosis) and adult life but does this control of expression actually mean something functional or is it merely physiological neutral? This ERV may just be replicating within the host genome without contributing something to host life. In order to understand this, they subjected X. tropicalis tadpoles or cell lines to a number of biological ‘stresses’ e.g. metabolic, temperature and UV stresses. An upregulation of ERV expression was seen upon metabolic and UV stresses and not in temperature – suggesting a fine tuning of its expression in response to a number of stresses. Whether this actually achieved something functionally was not investigated.



A recently discovered retrovirus derived gene in another frog species was found to play a role in protecting frog cells from the effects of freezing conditions. This study, on the backs of that investigation determined that frost-tolerant gene was derived from a highly conserved ERV present within Xenopus genomes. A distinct physiological role for these ERV-derived genes was not validated in this study yet in the future, further characterisation of its expression in vivo under temperature stress should be undertaken. This work underlines the importance that retroviruses and their endogenised cousins play in host cell functioning and evolution. Viruses are not all bad news – sometimes they can help you.

Roossinck, M. (2011). The good viruses: viral mutualistic symbioses Nature Reviews Microbiology, 9 (2), 99-108 DOI: 10.1038/nrmicro2491

Sinzelle, L., Carradec, Q., Paillard, E., Bronchain, O., & Pollet, N. (2010). Characterization of a Xenopus tropicalis Endogenous Retrovirus with Developmental and Stress-Dependent Expression Journal of Virology, 85 (5), 2167-2179 DOI: 10.1128/JVI.01979-10

No comments:

Post a Comment

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS